Measurement and the software development process

Colin Kirsopp

Abstract

This paper argues that software measurement and the software development process are
mutually dependent. Firstly, a high-level view of the relationship between measurement and
the development process is taken. This view shows where the various activities within
software measurement are positioned within the context of the high-level project stages. The
topic of process modelling is introduced, and is used to develop a lower-level view of
measurement integration with process. This shows that process models for measurement
integration should be sufficiently fine-grained to show when measurements should be
collected, how they should be collected, who should collect then, and how the results will be
used (the usual lifecycle models are too coarse-grain to achieve this). It is also shown that
measurement can be most easily integrated within an automated environment, as
measurement collection should itself be automated.

The initial work on the integration of measurement with process shows that there are
elements of measurement, such as measurement definition and empirical validation, that must
be considered outside of an individual project. To facilitate these cross-project measurement
activities, the organisational structure within which the individual projects run is examined.
To illustrate this, the authors discuss the use of measurement within the organisational model
provided by the TAME project [1-3].

1. Introduction

Software measurement is often considered in isolation from the software development
process within which the measurements are taken. Metrologists discuss the details of
measurement definition and validation. Process modellers discuss the ordering and
organisation of development activities. These groups rarely meet, except perhaps in the field
of software process improvement. It is the contention of this paper that software
measurement and the software development process are (or should be) mutually dependent
activities. The paper sets out to show these dependencies and examine their implications for
organisations involved in software development.

Section 2 of this paper discusses the relationship between software measurement and the
software development process. It first establishes the dependencies between measurement
and the development process and then considers how the activities of the measurement
process fit within the high-level stages of the development process.

One way of integrating measurement and process is through process modelling. An
overview of process modelling is given in section 3. The uses of measurement within process
models are also considered, as are the forms of process models suitable for measurement
integration.

Software measurement is sometimes used for process improvement. The position of

measurement within an improvement oriented organisational structure is also considered.
This consideration is based around work done as part of the TAME project outlining an

www.manaraa.com



organisational structure for process improvement combining support for model building,
project guidance and measurement [1-3].

2. The relationship between measurement and process

The famous quote from DeMarco that “you can’t control what you can't measure” [4]
shows the dependency of development process control on software measurement. What may
perhaps be less apparent, though equally true, is the dependency of measures on process. The
needs of the process dictate what should be measured. The process defines when
measurements should be taken and how the results of measurement will be interpreted (and
perhaps feedback). For these reasons measurement should be considered as an integral part
of the development process and not merely an adjunct to it. Figure 1 outlines the way that
measurement process activities may be positioned within the high-level stages of a
development project.

Figure 1: The position of measurement elements within project performance

Pre-Project — Pro;e_ct Project _»Post—pro.]ect_’
planning performance evaluation
Metric
M Definition
€ :
g Theoretical
v Validation
(<
m Measurement
11::1 Planning
P Measurement
I Collection
c -
€ Measurement Angkis
S Control Descriptive
Metrics metrics
v Empirical
Validation

When considering the integration of measurement into process, the first thing to consider
is which elements of the measurement process require integration. At a basic level
measurement programmes may be considered to consist of planning, collection, analysis and
validation [5].

The first activities of the measurement process are metric definition and theoretical
validation. Although these are necessary activities in an overall measurproeets they
will usually have already been completed before the project process begins and so are not
considered part of a measuremenbgramme They are included here mainly for reasons of
completeness. However, it is possible that if a project has requirement for a new measure
that these activities will be done during the project planning stage.

Deciding which measurements to make, and when to make them, ought to be done during
the planning stages of the project and will be an integral part of the design/selection of the
development process. It need not therefore be integrated into the development process
model.

www.manaraa.com



The collection and analysis of measures intended for project control must be integrated
within the development process. Their use for process control can be integrated into the
process model by using the results of measurement as event guards/triggers. This prevents
activities from occurring unless particular measurement values (or ranges) have been
achieved, or force activities to occur that would otherwise be bypassed. Within quantitative
process models measurement values may also be used to select between alternative courses of
action. Among other things, this provides a means of quantifying the exit criteria for iterative
cycles within processes. However, care must be taken when using quantitative process
models to ensure that they are not too prescriptive. The measures on which decisions are
taken are often only indirect measures (or predictions) of the data which would ideally be
used to make the decisions. Decisions based on such approximations should be made with a
sensible degree of flexibility.

As well as control measures, descriptive measures may be collected. These are measures
that do not directly affect the control of the project on which they are collected. Their use
may be to help empirically validate metrics which are being considered for the control of
future projects or to gain a quantitative understanding of what is happening within the project
to help suggest process improvements. Adding this type of measurement produces what is
termed an instrumented model. It is quite possible for such measures to be collected during a
project but not analysed or applied until after the project’s completion.

Empirical validation is an on going process, where each successful use of a metric
increases confidence in its utility. The empirical validity of metrics may either, be reassessed
as soon as the data becomes available (during the project), or may be left until after the
project's completion.

3. Software process modelling
One obvious approach to integrating (or describing the integration) of measurement with
the development process is with the use of process models.

3.1. What is Software Process Modelling?

Software process modelling is the formation of, and reasoning about, abstract
representations of the processes and people concerned with the development and maintenance
of software systems. The purpose of a process model will dictate the elements of the process
that are included in the model. Curtis lists five possible purposes of process modelling:
understanding and communication; process improvement; enhanced process status visibility;
automated process guidance; process enactment [6]. Shepperd adds a sixth, the reuse of
successful processes [5].

The particular aspects of a process that are modelled will depend on the detail of how it
will be used. There are many aspects that may form part of a model. These aspects include:
the tasks to be carried out;
the order in which the tasks should be carried out;
the inputs and outputs to each task;
when and where a task will be performed;
how and why a task is done;
the roles and agents involved in performing the various tasks;
the iterative, interleaved and concurrent nature of tasks/sub-processes;
the conditions under which branches in process control are made;

O~NO O WNE

www.manaraa.com



9 the artefacts produced by or used in the process;
10the resources used during a task;
11 the roles or activities which are dependent upon a task being completed.

3.2. Process Modelling Techniques

Shepperd divides the methods used in process modelling into five main categories [5]:
lifecycle models; executable models; formal models; psychological models and graphical
models.

3.2.1. Lifecycle Models

Lifecycle models are probably the best-known representations of software development
processes. They are generally very coarse-grained models. Lifecycles can be split into two
major types those derived for traditional structured development and those more recently
proposed to allow for the differences in approach of object-oriented development.

3.2.2. Executable Models

Executable models are those which are written in computer enactable form. They tend to
be much finer grained than lifecycle models. The advantage of an executable model is that
they can be used to support automated software engineering environments. Several types of
executable model have been used. These range from variations on standard procedural
programming languages, such as the use of the Ada in the REBUS tool [7, 8] to functional
languages and Al approaches.

This type of executable process model has been compared to software itself [9] . This has
some interesting implications. If we can treat processes as software then the techniques and
principles that can be applied to software production should also be applicable to process
modelling. This includes: desirable properties like reversibility [10] and seamlessness [11];
constructing process models from reused components; and using process patterns for
common types of modelling problems.

The above implications may only be considered useful or valid if we can model processes
in the same way as software. As Curtis points out process modelling is different from other
modelling in software engineering because some of the roles it models must be performed by
people [6]. The introduction of people into the models adds a level of non-determinism
which does not exist in software modelling [5]. Some might consider this to be sufficient
grounds for treating software design and process modelling separately. However, software
design techniques and notations are commonly used for representing process models.

3.2.3. Formal Models

Formal models involve the production of a mathematical description of the process. This
type of process modelling has been done using both algebraic (OBJ) and model based (VDM)
methods. Their strict formalism allows mathematical reasoning to be applied to process
descriptions. However, formal method’s determinism raises doubts as to whether they can
properly describe human behaviour.

3.2.4. Psychological Models

Psychological modelling results in a very different type of model. They have their
primary focus on modelling how people actually perform activities and make decisions. A
model has been developed by Guindon and Curtis of designer behaviour using JSD [12].
This model shows that designer jumps between levels of abstraction and between design and

www.manaraa.com



requirements whilst producing a solution. This shows a possible advantage of this type of
modelling. Most process models of design would have assumed a textbook top-down or
bottom-up approach. Without studying how people perform processes any process script may
not be very precise.

3.2.5. Graphical models

Most process modelling methods fall into the graphical modelling type. This includes:
general modelling methods such as flowcharts; notations borrowed from management
planning like PERT charts or critical path analysis; software design notations from both
structured methods (DFD, ERD, STD) and object-oriented methods (OMT, UML); and
notations designed specifically for process modelling such as role activity diagrams (RADS).

3.3. Process modelling considerations

Deciding on the notation for a process model requires a clear purpose. There are a number
of aspects of this purpose that may be considered to help make a choice of modelling
notation.

3.3.1. Granularity

The granularity is the level of detail with which the process is described, or alternatively
the size of the basic elements of the model. The purpose of a model will require certain
information to be represented at a particular level of detail. If a notation is used which not
capable of sufficient detail the purpose may not be achieved. If a notation is used which
prescribes a finer granularity than necessary then the model will be cluttered with
unnecessary information and consequently more difficult to use than it might be.

A related consideration in the choice of notation is the precision required of the model.
The precision is the degree to which the model represalitsteps to be carried-out to
produce desired results. This is in effect the fidelity of the model.

If our purpose in modelling is to enable measurement to be integrated with the
development process, then the granularity and precision of the method chosen must be
commensurate with this purpose. Although lifecycles do provide a representation of the
software development process, they have too coarse a grain to show how measurements
would affect project control flow, or what measurements should be taken when. This leads to
the conclusion that a more detailed description of software processes is required. Methods
from within each of the other categories appear capable of representing processes at a
sufficiently fine-grained manner to enable measurement integration.

3.3.2. Formality

The level of formality of modelling methods varies greatly from the strict formalism of
VDM and OBJ to the more human centred psychological modelling. Process models
intended for machine enactment are generally termed process programs. These models
require a high degree of formality to give precise execution semantics. Process programs
have the advantage that they are amenable to static checking (completeness, consistency and
correctness) and dynamic checking (reachability, deadlocks and race conditions).

Process models that are intended for human enactment are usually termed process scripts.
The non-determinism inherent in human action requires that process scripts have a substantial
degree of flexibility within them. In general, for process descriptions intended for humans,
expressiveness and comprehensibility are more important than strict formality.

www.manaraa.com



If we again consider the various methods’ suitability for measurement integration there are
problems with the strictly formal methods like VDM and OBJ. The first problem is
scalability. Although formal methods can be effectively used to represent fairly simple
systems they may have difficulty with a fully formed industrial process. A second problem is
the limited use and understanding of formal methods in industry and the associated reluctance
to use them. These problems may mean that strict formal models are unsuitable for
measurement integration on anything other than small academic examples.

On the other extreme, psychologically derived models may lack sufficient formalism to
allow any useful computer enactment. It is generally agreed that industrial scale
measurement will require automation. Possible difficulties in combining a manual process
enactment with automated metrics collection may also rule-out psychological models for use
in measurement integration.

3.3.3. Modelling style

Modelling styles can be divided into three perspectives, prescriptive, descriptive and
proscriptive. Prescriptive models specify how the process must be performed. This detailed
description of exactly what must be done can clash with human agents who tend to do things
in a less regimented way. In such circumstances the process which is actually followed may
often not be that which is prescribed. Descriptive modelling is used to determine the process
that is actually being used. The third perspective on process modelling, proscriptive
modelling, describes behaviour which is not allowed in the process. It is impossible in
practice to describe the complete set of things which should not be done in the performance
of a particular process (the list would be virtually endless). For this reason proscriptive
modelling is usually used as an adjunct to prescriptive and descriptive models. In this
situation they can be used as constraints on activities or events.

Since measurement may be used to describe processes or the control them via prescriptive
or proscriptive means, any of these styles could be use for measurement integration.

4. Measurement and organisational structure

As was discussed in section 2, some aspects of software measurement involve inter-project
activity that cannot be done within a single project’s process model. Also, an individual
project’s process doesn't exist in isolation, it is designed and applied within the wider
company structure and operates within an historical context of previous projects and the
experience gleaned from them. To consider these inter-project questions an organisational
structure will be examined that has been designed with these issues in mind.

4.1. The TAME model

The diagram below shows the improvement oriented organisational structure developed by
the TAME project [1-3]. The model is made up of individual project organisations which use
(or reuse) elements supplied from an experience factory. The results from, and lessons
learned whilst performing, each individual project are used to populate the experience base.

An individual project has its own characteristics and goals. These are used to choose
appropriate models and metrics from the experience factory to be used during the project
performance. The models may include product models, process models, resource models,
and quality models. The project is then planned, performed and monitored using the models
and metrics. Records of the project performance and any lessons learned during the project

www.manaraa.com



are fed back into the experience factory. This new experience is then packaged for future
use, or used in the repackaging of existing models and metrics.

Figure 2: Organisational structure tailored for measurement

Project Organisations
plan execute
- * construct
> »| choose -
characterisg set goalg|_ models ]
) "| analyse
A
A
Learn Reuse
 Record * Identify
. » evaluate
Package . modify
A
\ 4
REUSE tailor
formalise CANDIDATES )
Experience Base generalisg
Experience Factory

4.1.1. Project organisations

A project organisation deals with the performance of a single project. Within each project
there are a set of standard activities, i.e., characterisation, goal setting, model selection,
construction, and analysis.

Characterisation takes place during a project’'s planning stage. It involves assessing
various project attributes in order to aid model selection. In order to be useful there must be a
record of the characterisations of previous projects, the various models they used and the
degree to which those models were considered to fit that project after-the-fact.

Goal setting is the selection, and operational definition, of goals for the construction and
review (analysis) of the system being built. The team who produced the TAME model were
also central in producing the goal question metric paradigm (GQM) [13] and they suggest
relating the setting of project goals to measurable outcomes using GQM.

Model selection uses the analogies drawn from the characterisation to chose models to be

used in the performance of the current project. As has been previously mentioned, it may be
that there is no sufficiently close model to use and a new model may need to be constructed.

www.manaraa.com



Construction is the process of actually producing the end product of the project. The
construction is done according to the chosen development process model and the selected
methods and tools.

The analysis and packaging of data from a project organisation must be done with
reference to the existing data in the experience factory. Using knowledge of the existing
models and metrics it must be decided what form of analysis would produce results suitable
for packaging, storage and reuse.

4.1.2. Experience factory

The experience base holds the complete body of experience that is available for use by the
project organisations. The experience factory contains the experience base and also
associated processes for working with stored experience. These process include: tailoring
existing experience to be reused in new contexts; generalising specific experiences to make
then more widely applicable (and hence more reusable) and formalising experience into
models that may also be reused more easily.

In general, the experience-base may contain any product or process entities that a
company feels may be usefully reused. If a more specific view is taken, relevant to
integrating measurement with process, the set of entities of direct interest can be listed and
discussed. These entities may include entity models such as attribute models, process models,
resource models, quality models and process models. They may also include the goals and
guestions used to select measures, the measures themselves, measurement results and the
heuristics or thresholds used for the interpretation of measurement results.

4.2. TAME and the measurement process

4.2.1. How is measurement used in the TAME model?

There are several places within the organisational structure where measurement is used.
Measures may be used to characterise projects. Project goals should be set in measurable
terms (often via GQM). The models used in the construction and analysis phases of a project,
e.g., quality models, are often measurement-based. As Basili states, 'analysis (including
measurement) cannot be an add-on but must be part of the execution process and drive the
construction' [1]. This means putting then actual construction of the product under
measurement control.

4.2.2. How does the TAME model facilitate measurement?

A major advantage to measurement of using the TAME model would be in planning a
measurement programme. Measurement planning requires the selection of which measures
to collect as well as how and when to collect them. An experience base can help with this is
several ways. It can provide process models (or model sections) already packaged with the
necessary control measures, including when and how they should be collected and how the
results will be used. Storing historical GQM hierarchies can help to associate a new project's
goals with relevant measures. Pre-packaged quality, resource or product models may also be
defined in terms of measures. All of this stored experience can be used to reduce the effort in
measurement planning.

As mentioned previously, empirical validation is an on going process, where each

successful use of a metric increases confidence in its utility. This means that the validity of
measures must be constantly reassessed each time new data becomes available from a project.

www.manaraa.com



The database of measurement results must be maintained outside of any individual project, as
it will contain the results from many projects.

The storage of historical measurement data would also be useful in the tuning of
measurement thresholds or ranges used in process control or quality evaluation. Again this
data is collected across a number of projects and so must be stored outside of any individual
project organisation.

5. Summary

Software measurement and the software development process are (should be) mutually
dependent. The most promising means for integrating measurement and process seems to be
process modelling. Process models intended for measurement integration should be
sufficiently fine grained to show when, and how measurements should be taken, who should
take then, and how they will be used. The necessity for this level of granularity excludes the
use of the standard lifecycle models.

Measurement can be most easily integrated within an automated environment as the
measurement collection must also be automated. This may lead to a preference for
executable process models for measurement integration. These executable models may,
however, have problems representing non-deterministic human behaviour. This problem of
ease of automation versus ease of understandability and precise representation of human
behaviour doesn’'t appear a particularly tractable one. It seems likely that trade-off and
compromise are required here rather than attempting to find an ‘ideal’ solution.

A measurement programme may be split into its constituent parts of planning, collection,
analysis and validation [5]. Of these parts the measurement planning must be done during the
project planning stage before the development process model can be enacted. Validation may
be split into theoretical validation and empirical validation. Of these theoretical validation
may be done during project planning. Measurement collection must be integrated with the
development process and taken into consideration when choosing/designing the process. The
analysis of any measures that can effect the control of the process must also be integrated
with the process. The analysis of descriptive measures that do not impact process control
may be done during the process or may be left until after the development is complete.
Empirical validation may be done as soon as the results are available, but may often be left
until after the completion of the development.

Empirical measurement validation and measurement reuse are mutually dependent
activities. Unless a measure is reused the necessary corroborative evidence cannot be
gathered for validation and assessment of generality. Unless a measure is validated it will not
be reused. Both of these aspects of software measurement involve inter-project activity that
cannot be done within individual project organisations. To consider these inter-project
guestions we need to define the organisational structure within which individual projects take
place.

One model for an organisational structure is that produced by the TAME project. This
structure is used as an example to demonstrate the interaction of measurement and process
and show the facilities that need to be in place, at an organisational level, to aid measurement
integration with process. It also shows how these facilities interact with individual projects.

www.manaraa.com



6. Conclusions

If measurement and process are mutually dependent they should be planned, stored and
reused together. Measurement programmes require cross-project structures for data storage,
analysis, threshold tuning and validation. The TAME model provides the mechanism for
achieving these goals.

Would the author recommend every software development company to drop their existing
organisational structure and adopt TAME? In reality, no. No one would seriously consider
swapping their organisational structure in a revolutionary way. So you might say, what's the
point of the work? The TAME model provides an example of an organisational structure
with facilities to support measurement and for development to be supported by measurement.
It isn't necessary that the TAME model be adopted. However, it is desirable is that those in
software development gain an understanding of the inter-dependencies of measurement and
process, and understand the facilities that need to be put in place in order to take advantage of
them.

7. References

[1] Basili, V.R. and Rombach, H.D., "The TAME project: Towards Improvement-oriented software
environments", IEEE Transactions on Software Engineering, 1988. 14(6), p. 758-771.

[2] Lott, C.M. and Rombach, H.D., "Measurement-based guidance of software projects using
project plans. Information and software technology", 1993. 35(6/7), p. 407-419.

[3] Basili, V.R. and Rombach, H.D., tport for comprehensive reuse", report No. CS-TR-2606,
1991, University of Maryland.

[4] DeMarco, T., "Controlling software projects”, Yourdon Press, New York, 1982.

[5] Shepperd, M., "Foundations of software measurement”, Prentice Hall, 1995.

[6] Curtis, B., Kellner,M.I. and Over, J., "Process modeling", Communications of the ACM, 1992.
35(9), p. 75-90.

[7] Sutton, S.M., Heimbigner, D. and Osterweil, L.J., "Language constructs for managing change
in process-centered environments”, ACM SIGSOFT Sofware Engineering Notes, 1990. 15(6),
p. 206-217.

[8] Sutton, S.M., et al. "Programming a software requirements specification process", in 1st IEEE
International Conference on the Software Process, Redondo Beach CA, 1991.

[9] Osterweil, L.J., "Software Processes are Software Too", in 9th International Software
Engineering Conference, IEEE Computer Society Press, 1987.

[10] Shepperd, M.J. and Ince, D.C., "Derivation and validation of software metrics", Open
University Press, 1993.

[11] Awvotins, J. "Towards an object-oriented metric modeling method", in OOPSLA'96 - workshop:
OO product metrics, 1996.

[12] Guindon, R. and Curtis, B., "Control of Cognitive Processes during Design : What tools would
support software designers?", in Proceedings of CHI'88, New York: ACM, 1988.

[13] Basili, V., Caldiera, G. and Rombach, H.D., "The goal question metric approach”, in
Encyclopedia of software engineering, Wiley, 1994.

www.manaraa.com



